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Abstract— In recent years, convolutional neural networks
(CNNs) have achieved excellent performance in hyperspectral
image classification and have been widely used. However, the
convolution kernel used in traditional CNN has the limitation
of single scale, which is not conducive to the improvement of
hyperspectral classification performance. In addition, training a
classification network of high-dimensional data based on limited
labeled samples is still one of the challenges of hyperspectral
image classification. To solve the above problems, a hyperspectral
image classification method based on expansion convolution
network (ECNet) is proposed. The expansion convolution injects
holes into the standard convolution kernel to expand the receptive
field (RF), so as to extract more context features. Because the
shallow features of hyperspectral images contain more location
and detail information, while the deep features contain stronger
semantic information, in order to further enhance the correlation
between deep and shallow information, inspired by ResNet,
a similar feedback block (SFB) is introduced on the basis of
ECNet, and the deep features and shallow features are fused
through this feedback mechanism. Thus, an improved version
of ECNet method is obtained, which is called feedback ECNet
(FECNet). This study was tested on four commonly used hyper-
spectral datasets [i.e., Indian Pine (IP), Pavia University (UP),
Kennedy Space Center (KSC), and Salinas Valley (SV)] and on
a higher resolution and complexly distributed land cover dataset
(University of Houston (HT). The experimental results show that
the proposed method has better classification performance than
some state-of-the-art methods, which shows that FECNet has a
certain potential in hyperspectral image classification.

Index Terms— Convolutional neural network (CNN), expansion
convolution block (ECB), hyperspectral image (HSI) classifica-
tion, similar feedback block (SFB).

I. INTRODUCTION

IN THE past few decades, hyperspectral technology has
been developed rapidly and widely used in many fields,

for example, vegetation, estimation of soil salinity, geophysical
exploration, and so on [1]–[5].
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Hyperspectral image (HSIs) is a field with great research
vitality and has also received extensive attention in the field
of remote sensing [6]. In the early stage of HSIs research,
many spectrum-based feature extraction methods were pro-
posed successively, including support vector machines (SVMs)
[7], multiple logistic regression [8], [9], and dynamic or
random subspace [10], [11]. In addition, some methods based
on feature extraction or dimensionality reduction have also
attracted people’s attention, such as principal component
analysis (PCA) [12], independent component analysis (ICA)
[13], and linear discriminant analysis (LDA) [14]. However,
the above classification results based on pixelwise classifier
are not satisfactory. In order to better classify hyperspectral
images, some effective spatial–spectral feature representation
methods are proposed [15], [16]. Among them, the classical
methods based on spatial–spectral feature extraction include
extended morphological profiles (EMPs) [17] and multiple
kernel learning [18], [19]. In [20]–[22], the sparse repre-
sentation model considers the adjacent spatial information.
In addition, in [23]–[25], HSIs are divided into multiple
superpixels to explore spatial consistency according to the
similarity of texture. Although these methods based on spatial–
spectral feature extraction are more effective, they are difficult
to provide better classification performance in the case of high
interclass similarity and large intraclass differences. Therefore,
obtaining more discriminative features is the key to further
improve the classification performance.

With the advent of the big data era, deep learning has
developed rapidly in the past few years and has been applied in
many fields, such as image processing [26], natural language
processing [27], and so on. In the early development of
deep learning, stacked autoencoder (SAE) [28] and recursive
autoencoder (RAE) [29] were proposed and achieved good
performance. However, this method can only deal with 1-D
vectors, which leads to the destruction of the spatial informa-
tion of HSIs. Subsequently, in [30], the restricted Boltzmann
machine and deep belief network were used to extract features
and pixel classification, retaining most of the feature informa-
tion of HSIs. In addition, some methods based on 2-D convolu-
tional neural network (CNN) have been proposed successively,
including rolling guidance filter and vertex component analysis
network (R-VCANet) [31], 2-D CNN [32], and so on. In order
to better represent data, HSIs are generally regarded as a 3-D
cube. Therefore, using the method based on 2-D CNN to
deal with HSIs will lead to the complexity of convolution.
In order to make up for the shortcomings of 2-D CNN, some
methods of 3-D CNN are proposed. Lee and Kwon [33]
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proposed a contextual deep CNN (CDCNN), which can jointly
extract the spatial–spectral information of HSIs. However, with
the deepening of the network, Hughes [34] phenomenon is
likely to appear. In order to alleviate this problem, He et al.
[35] proposed a new network structure ResNet. In addition,
Zhong et al. [36] proposed a spatial–spectral-based residual
network (SSRN). Paoletti et al. [37] proposed a pyramid
residual network (PyResNet), which adds additional links to
CNN and gradually increases the dimension of feature map in
all Conv layers. In [37], a CNN based on dense connections
(DenseNet) was proposed. By introducing dense connections
into the network, feature propagation was strengthened and
better classification performance was obtained. Because the
features obtained by single-scale convolution kernel are not
rich enough, many methods based on multiscale convolution
kernel are used to extract richer features, which improve the
classification performance of HSIs [39]–[41]. Recently, some
new methods for hyperspectral image classification have been
proposed. For example, Roy et al. [42] proposed a hybrid
3-D–2-D CNN model [Hybrid-spectral network (SN)], which
reduces the complexity of 3-D-CNN by combining 2-D CNN
and 3-D CNN. Meng et al. [43] proposed a two mixed link
network, which can extract more discriminative features in
hyperspectral images. Meanwhile, Roy et al. [44] proposed an
improved residual attention network (A2S2K-ResNet) based on
adaptive spatial–spectral kernel, which uses adaptive convolu-
tion kernel to expand receptive field (RF), so as to extract
more effective features. Although standard convolution can
provide better image classification performance, it often brings
a lot of parameters and computation. Therefore, it is also a
great challenge to build a network with low computing cost
and excellent classification performance under limited data
samples. Recently, Zhang et al. [45] proposed a lightweight
3-D asymmetric inception network (AINet). The network
improves the classification performance by emphasizing the
spectral features in the context of HSIs data space and the
learning strategy of data fusion and migration. However,
the classification performance of AINet is poor in the case
of limited data samples. Inspired by GoogLeNet and PeleNet,
Li and Duan [46] proposed a lightweight network (Lite-
DenseNet). The number of training parameters was reduced
through group convolution, and a 3-D two-way dense layer
was constructed to capture the local and global features of the
input. However, group convolution may affect classification
accuracy due to ignoring the relationship between channels.
Therefore, Cui et al. [47] proposed a new network structure
(LiteDepthwiseNet), which greatly reduced the number of
training parameters by decomposing the standard convolution
into depth convolution and pointwise convolution. Ma et al.
[48] proposed an end-to-end deep deconvolution network,
which uses unpooling and deconvolution methods to recover
the lost feature information of pooling operation, so as to
retain most of the original information of HSIs. Yu and Koltun
[49] proposed an expanded convolution network based on
multiscale context aggregation. Similarly, in order to solve the
problem of resolution and coverage loss caused by pooling
layer, Pan et al. [50] proposed a semantic segmentation net-
work (DSSNet) based on expanded convolution, which shows

that expanded convolution has certain potential for hyperspec-
tral image processing. At the same time, with the develop-
ment of CNN architecture, there are many excellent popular
models in the field of hyperspectral image classification.
In [51], a generative adversarial network (GAN) is proposed,
which use spatial spectrum classifier to fine tune the features.
Roy et al. [52] proposed a 3-D-hyperGAMO model using
a generative adversarial minority oversampling, which shows
excellent data generation ability and significantly improves the
classification performance. In addition, in order to better rep-
resent the sequence attributes of spectral features, Hong et al.
[53] used transformer architecture in the task of hyperspectral
image classification. This is also the first practice in the field of
hyperspectral image classification based on transformer archi-
tecture. Although the big data samples of the network have
obtained relatively good classification results, the classification
performance is still poor under limited samples.

In recent years, attention mechanism also shows great poten-
tial in computer vision. In cognitive science, human beings
tend to pay more attention to more important information
and ignore other information. Attention mechanism can be
regarded as the imitation of human vision and has been
widely used in many fields of computer vision [54]–[56].
Wang et al. proposed a squeeze-and-excitation (SE) module
[57] embedded in ResNet network. Ma et al. [58] proposed
a dual branch and multiattention network (DBMA) to extract
spatial–spectral information. Similarly, Li et al. proposed a
dual attention network (DANet) [59] and achieved good clas-
sification results. In order to further improve the classification
performance of HSIs, Li et al. [60] proposed double branch
and double attention network (DBDA). However, because the
spatial attention and channel attention of attention mechanism
are usually separated from each other, Cui et al. [61] proposed
a new dual triple attention network (DTAN), which can
effectively classify hyperspectral images by capturing cross-
dimensional interactive information.

Although the existing methods based on deep learning can
effectively extract hyperspectral image features, hyperspectral
image classification still faces many challenges, for example,
limited training samples [62] and huge computing costs [63].
In order to solve these problems, a hyperspectral image
classification method based on expansion convolution network
(ECNet) is proposed in this article. Since the computational
cost of expansion convolution will not increase with the
increase of RF, the expanded convolution is adopted as the
feature extraction unit. In order to further improve the classifi-
cation performance of ECNet, a similar feedback block (SFB)
is introduced to obtain an improved network feedback ECNet
(FECNet).

The main contributions of this article are as follows.
1) In order to fully extract the spectral features of HSIs,

an expanded convolution block (ECB) is proposed. This
module not only increases the RF but also does not
increase the computational amount, which alleviates
the computational cost of training. In addition, the
ECB-based method has good generalization ability.

2) A kind of similar feedback mechanism (SFM) is pro-
posed. Specifically, SFM is a mechanism that generates
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Fig. 1. It is a hierarchical diagram of the proposed FECNet. It is mainly composed of three blocks: SFM based on ResNet idea, ECB which can expand
convolution RF, and SAB with emphasis ability. In addition, in order to classify more effectively, the original input HSI is the processed element by element
and used as the input of the network (upper left corner). In particular, the designed ECNet does not have SFM of FECNet.

the attention maps with deep features through SFM
and feedback to shallow features. Both the deep rich
semantic information and the features with large RF are
used to calculate the attention map, which significantly
improves the classification performance.

3) In order to further enhance the propagation of features,
SFM is densely connected to form a kind of SFB.
Experiments show that SFB can greatly improve the
classification performance of hyperspectral images.

The remaining parts of this article are organized as follows.
Section II gives a detailed description of the proposed method
ECNet and the improved version FECNet. In Section III,
some experimental results are given and analyzed in detail.
Section IV gives the conclusions.

II. METHODOLOGY

The framework of the proposed FECNet is shown in Fig. 1.
It is mainly composed of several components: ECB, spectral
attention block (SAB), and SFB. In particular, the difference
between the designed FECNet and ECNet is that FECNet adds
SFB. Among them, ECB is used to obtain more contextual
information. In the case of the same RF, this block requires
fewer training parameters than the standard convolution block.
In order to better extract important features and suppress
useless features, SAB is adopted to emphasize the effec-
tiveness of spectral bands. In order to further improve the
representation ability of shallow features and deep features,
SFB is designed to fuse deep features into shallow features

for feature extraction again. Next, Sections II-A and II-B will
introduce the components of ECNet and the improved method
FECNet, respectively.

A. Proposed ECNet Method

The structure of ECNet is mainly composed of ECB and
attention mechanism block (SAB). In order to describe the
ECB proposed in this article clearly, the principles of 2-D
expansion convolution and 3-D expansion convolution will be
briefly introduced, and then, the component ECB and the SAB
in ECNet will be introduced in detail.

1) 2-D and 3-D Expansion Convolution: In recent years,
CNN has been widely used in the field of deep learning
because of its strong feature extraction ability. However, due
to the limitations of the traditional standard convolution, many
different convolution methods have been derived. Among
them, expansion convolution has also been widely used in deep
learning because it can obtain a larger RF.

In order to illustrate the difference between 2-D expansion
convolution and standard convolution, taking convolution ker-
nel with size of 3 × 3 as an example, the process of the
2-D expansion convolution is shown in Fig. 2 (where p × p
represents the size of space). From the perspective of the size
of RF, the RF increases with the increase of expansion rate of
expansion convolution. From the perspective of computational
complexity, compared with the standard convolution, in the
case of the same RF (excluding the expansion rate equal to 1),
the parameters required for the expansion convolution training
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Fig. 2. Analytical diagram of 2-D expansion convolution. From left to right,
the expansion rates of expansion convolution are 1, 2, and 3, respectively.
Where, the yellow box is the equivalent convolution kernel size. The blue dot
indicates the value of the corresponding position of the convolution kernel
when the expansion rate is equal to 1. The white point in the yellow box
represents the injected hole, and the value is equal to 0.

are less than the standard convolution and the greater the
difference between the two parameters with the increase of
the expansion rate. In order to more generally express the
equivalent convolution kernel relationship, it is assumed that
the size of convolution kernel is r × r , the expansion rate is
d , and the size of equivalent convolution kernel is r � × r �

r � = r + (r − 1)(d − 1). (1)

It can be seen that when the expansion rate is equal to 1, the
expansion convolution results are consistent with the standard
convolution results. When the expansion rate is equal to 2,
the RFs of the convolution kernel with the size of 3 ×
3 of expansion convolution and the convolution kernel with
the size of 5 × 5 of standard convolution are consistent.
Similarly, when the expansion rate is equal to 3, the RFs of
the convolution kernel with the size of 3 × 3 of expansion
convolution and the convolution kernel with the size of 7 ×
7 of standard convolution are consistent. Therefore, the general
expression of RF is

Ri+1 = Ri + �
r � − 1

�
Si (2)

Si =
i�

i=1

stride(i) (3)

where Ri is the RF of layer i th, Ri+1 is the RF of layer i +1th,
and Si is the product of all strides of the previous layer i th.

Different from 2-D expansion convolution, the principle and
corresponding relationship of 3-D expansion convolution are
based on 3-D space, as shown in Fig. 3. Similarly, in order to
illustrate the working process of 3-D expansion convolution,
take the convolution kernel with the size of 3 × 3 × 3 as an
example. The relationship between 3-D expansion convolution
and 3-D standard convolution still follows the law of 2-D
convolution. From the perspective of the size of RF, the RF still
increases with the increase of expansion rate. From the point
of view of computational complexity, when the expansion
convolution and the standard convolution have the same RF
(excluding the expansion rate of 1), the parameters required
for the expansion convolution training are still less than those
for the standard convolution and the greater the difference
between the parameters required for expansion convolution
and standard convolution with the increase of expansion rate.

Fig. 3. Analytical diagram of 3-D expansion convolution. From left to right,
the expansion rates of expansion convolution are 1, 2, and 3, respectively.
Where, the yellow box is the equivalent convolution kernel size. The blue dot
indicates the value of the corresponding position of the convolution kernel
when the expansion rate is equal to 1. The white point in the yellow box
represents the injected hole, and the value is equal to 0.

2) Component ECB: Convolution is a very effective feature
extraction method in deep learning. Specifically, if the input
is X ∈ RH×W×L (where H, W , and L are the input height,
width, and number of channels, respectively) and the output
is Y ∈ RH �×W �×L �

, and the input is convoluted

Y = X ∗ W + b (4)

where W ∈ Rr×r×M×N is the weighted tensor (where r × r
is the space size of convolution kernel, and M and N is the
number of input and output feature maps, respectively), and
b is the bias term. In order to further compare the expansion
convolution with the standard convolution, assuming that the
expansion rate of the expansion convolution is d , the parameter
and calculation quantity of the standard convolution are as
follows:

fSTD = (r + 2(d − 1))2 M N H �W � (5)

FSTD = H W (r + 2(d − 1))2 M N H �W � (6)

where fSTD represents the parameter quantity of standard
convolution, and FSTD represents the calculation quantity of
standard convolution. It can be seen from the above introduc-
tion that expansion convolution expands RF without reducing
the image resolution and adding additional parameters and
calculation. The parameter quantity and calculation quantity
of expansion convolution are as follows:

fEXP = r2 M N H �W � (7)

FEXP = H Wr2 M N H �W �. (8)

It can be seen that standard convolution is a special form of
expansion convolution. Where fEXP represents the parameter
quantity of expansion convolution, and FEXP represents the
calculation quantity of expansion convolution. In order to
more intuitively show the difference between the calculation
quantity and parameter quantity of standard convolution and
expansion convolution when the standard convolution RF is
consistent with the equivalent RF of expansion convolution,
Fig. 4 shows the relationship between them. As can be
seen from Fig. 4, with the increase of RF, the quantity of
calculation and parameters of expansion convolution do not
change, while the quantity of calculation and parameters of
standard convolution increase exponentially.

For hyperspectral images, extracting multiscale features
can greatly improve the classification performance. However,



SHI et al.: HYPERSPECTRAL IMAGE CLASSIFICATION BASED ON ECNet 5528316

Fig. 4. Relationship between calculation quantity and parameter quantity of
standard convolution and expansion convolution. (a) Relationship of parameter
quantity. (b) Relationship of calculation quantity.

Fig. 5. Designed ECB.

there are still some contradictions in network design, such
as the contradiction between RF and computational complex-
ity and the contradiction between large RF and small RF.
In order to alleviate the above contradictions, this article
uses expansion convolution as the main feature extraction
method of the network. The designed ECB is shown in Fig. 5.
The block is mainly composed of three parts: expansion
convolution layer, batch normalization (BN) layer, and acti-
vation function rectified linear unit (ReLU). Among them,
the expansion convolution layer is expressed as “the size
of convolution kernel—the number of output feature maps—
expansion rate.” For example, 1 × 1 × 3-C-1 indicates
that the size of the convolution kernel is 1 × 1 × 3, the
number of output feature maps is C , and the expansion rate is
equal to 1.

In order to further prove the advantages of expansion con-
volution, multiple expansion convolution layers are connected
sequentially to build the ECB. The block can not only obtain
the detailed information through the expansion convolution
with small expansion rate but also obtain the context informa-
tion through the expansion convolution with large expansion
rate, which makes the acquired features richer and has stronger
discrimination ability. According to the principle of expansion
convolution, this method can maximize the RF. In short, the
RF size of the current layer is the expanded RF of the current
layer superimposed on the RF of the previous layer. Since the
space size of the convolution kernel of the block is 1 × 1, the
RF calculation process of the 3-D expansion convolution with
the convolution kernel of 1 × 1 × 3 is similar to that of the
2-D expansion convolution.

3) Standard 3-D Convolution: CNNs have strong represen-
tation ability. Because hyperspectral images contain spatial
and spectral features, the use of 2-D convolution usually
destroys the correlation among image samples. Therefore, the
standard convolution of the proposed network adopts 3-D
standard convolution. The calculation process of 3-D standard

Fig. 6. Spectral attention mechanism block (SAB).

convolution is as follows:

v
xyz
i j = f

⎛
⎝�

m

Pi −1�
p=0

Qi −1�
q=0

Ri −1�
r=0

w
pqr
i jm v

(x+p)(y+q)(z+r)
(i−1)m + bi j

⎞
⎠ (9)

where i represents the current layer, v
xyz
i j represents the output

of the j th feature map of layer i at position (x, y, z), m
represents the number of feature maps connected between
layer i and layer (i − 1), v

pqr
i jm represents the weight of the

mth feature map at position (p, q, r), bi j represents the bias
term, f represents the activation function, and P, Q, and R
represent the length, width, and height of the convolution
kernel, respectively.

4) Component SAB: In neural network, attention mecha-
nism can dynamically manage information flow and features,
so as to improve learning effect. This mechanism filters out
irrelevant stimuli and helps the network deal with long-term
dependence. In order to focus on useful features, a spectral
attention mechanism block (SAB) is designed in the network.
The process of the designed SAB is introduced as follows.

The structure of SAB is shown in Fig. 6. The SAB can
understand the relationship between spectral channels and
setting each input element to a threshold of 0 to 1, which
can reflect the importance or dependence of the element in
the feature. Specifically, assuming that the input is P ∈
Rd×d×k (where d × d is the space size and k represents
the number of channels), in order to facilitate the calculation
of the dependence between different positions, the input is
transformed or transposed to obtain X1, X2, and X3, and then,
X1 and X2 are matrix multiplied and the results perform f (·)
operation, where

f (·) = Soft max(·) (10)

where f (·) represents the activation function layer, which can
organize the attention map into a probability distribution with
the weighted sum of each channel as 1, which is recorded as
G ∈ Rk×k

g ji = exp
�

X T
i · X j

�



∀ j

�
X T

i · X j
� (11)

where g ji is the weight coefficient of the i th channel to the j th
channel, that is, the importance of the i th channel to the j th
channel, and Xn(n = 1, 2, . . . , k) represents the nth channel
of X . Set α as the attention parameter (if α = 0, the attention
mechanism does not work)

Y j = α
�
∀ j

g j i X j + X j (12)
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Fig. 7. Structure of SFM.

where Yn(n = 1, 2, . . . , k) represents the nth channel of
Y ∈ Rd×d×k .

B. Improved Method FECNet of ECNet
Based on ECNet, the SFB is introduced, which is composed

of multiple SFMs.
For a neural network, because shallow features contain more

location and detail information, while deep features contain
stronger semantic information, the extraction of shallow fea-
tures can contribute to the extraction of deep features, and
deep features can also provide feedback for shallow features.
Therefore, the fusion of deep multiscale features and shallow
features is an important way to improve the classification
performance of hyperspectral images. Therefore, this article
designs an SFM, which can feedback the deep features to
the shallow features in the form of attention maps, and the
shallow features are fused with the feedback attention maps,
so as to realize the deep fusion of deep features and shallow
features. The structure of SFM will be described in detail
below.

The structure of SFM is shown in Fig. 7. Suppose that
X ∈ Rd×d×b (where d × d is the space size of the cube and
b is the number of channels), and X0 generates two feature
maps after passing through a max pooling layer and an average
pooling layer, which are X1 and X2, respectively. In order
to balance the local information and global invariance, the
obtained X1 and X2 are cascaded to obtain X3. Then, X3 is
passed through a global average pooling layer to obtain X .
Finally, X is convoluted with K to obtain the correction matrix
Y . That is

Y = G(X) = X ∗ K + b (13)

where G(·) represents the convolution function, and b rep-
resents the offset term of the convolution. In SFB, X =
{x |x1, x2, . . . , x4c} ∈ R1×1×4c, K = {k|k1, k2, . . . , k2c} ∈
R1×1×2c, b = [b1, b2, . . . , b2c]T , and Y ∈ R1×2c.

In order to fully feedback the semantic information of the
later layer, SFM is densely connected to form SFB, as shown
in Fig. 8. This dense connection method is inspired by the
idea of ResNet, which feedback the deep features to all the
previous layers. After the deep feature passes through the SFB
module, a feedback correction matrix is generated, which can
represent the semantic information of the deep feature. The
obtained correction matrix is loaded into the shallow feature,
so that the shallow feature can obtain the initial weight value
related to the deep feature. This kind of feedback block can
well combine the deep and shallow feature information and

Fig. 8. Structure of SFB. The structure consists of three SFMs.

Fig. 9. Real land cover of IP scene. (a) Ground truth. (b) Label of IP scene.

Fig. 10. Real land cover of UP scene. (a) Ground truth. (b) Label of UP
scene.

form the direct correlation between deep and shallow features,
which is very beneficial to effective feature extraction.

III. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, in order to verify the effectiveness of the
proposed ECNet and the improved FECNet, a large number
of experiments are carried out on five HSIs datasets.

A. Experimental Data Description

The experiment used four commonly used public datasets
and a higher resolution dataset, including Indian pine (IP),
Pavia University (UP), Kennedy Space Center (KSC), Salinas
Valley (SV), and University of Houston (HT). The color
composite image of the dataset, the real classification map
of features, and the details of each category are shown
in Figs. 9–13.
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Fig. 11. Real land cover of KSC scene. (a) Ground truth. (b) Label of KSC
scene.

Fig. 12. Real land cover of SV scene. (a) Ground truth. (b) Label of SV
scene.

Fig. 13. Real land cover of HT scene. (a) Ground truth. (b) Label of HT
scene.

1) IP: The IP dataset was captured by the Airborne Visi-
ble Infrared Imaging Spectrometer (AVIRIS) sensor in
June 1992. The space size of the dataset is 145 × 145,
the number of bands is 220, and the wavelength range
is 0.2–2.4 μm. Among them, except for the number
of bands with water absorption and low signal-to-noise
ratio (bands 108–112, 150–163, and 220), there are still
200 bands available for experiments. The real category
of the image is 16 (as shown in Fig. 9).

2) University of Pavia (UP): The UP dataset was obtained
by the Reflective Optical Spectral Imaging System

(ROSIS-3) sensor. The dataset contains nine real cat-
egories with an image size of 610 × 340, with a
spatial resolution of 1.3 m, 115 bands, and a wavelength
range of 0.43–0.86 μm. In addition to 13 noise bands,
103 bands are left for the experiment (as shown in
Fig. 10).

3) KSC: The acquisition tool of Kennedy aviation center
dataset is the same as that of IP dataset, which was
captured by AVIRIS sensor in Florida in 1996. The
space size of the image is 512 × 614. After removing
the water absorption band, 176 bands are left for the
experiment. The spatial resolution of the image is 20 m,
and the spectral range includes 400–2500 nm. The image
contains 13 different land cover categories (as shown
in Fig. 11).

4) SV: The SV dataset was also collected by AVIRIS
sensors. The dataset is characterized by the regular
distribution of different ground cover categories. The
image contains 16 categories and the space size is 512 ×
217, except for the water absorption bands (108–112,
154–167, and 224), and there are 204 bands left for the
experiment (as shown in Fig. 12).

5) HT: The HT dataset was acquired by the Compact
Airborne Spectral Imager (CASI) sensor on the HT
Campus in June 2012. The space size of this scene
is 349 × 1905, the number of bands is 114, and the
wavelength range is 380–1050 nm. The image contains
15 land cover categories (as shown in Fig. 13).

B. Experimental Setup

The batch size and training epochs of the design network
are set to 16 and 200, respectively, and Adam algorithm
is used for optimization. During the experiment, the setting
range of learning rate is 0.001, 0.005, 0.0001, 0.0005, and
0.00005. Through multiple experiments on each learning rate,
the learning rate is finally set to 0.0005. The designed net-
work is designed and implemented by pytorch framework.
All data results are the average of 30 experimental results, and
all experiments are implemented in the same configuration.
Among them, the hardware platform of the experiment is Intel1

Core2 i9-9900K CPU, NVIDIA GeForce RTX 2080Ti GPU,
and 32-GB RAM. The experimental software platform is based
on windows10 VSCode operating system, including CUDA
10.0, Pytorch 1.2.0, and Python 3.7.4.

In order to evaluate the classification performance of dif-
ferent methods, the overall accuracy (OA), average accuracy
(AA), and Kappa coefficient (Kappa) are used as evaluation
indexes.

C. Classification Results

In order to verify the effectiveness of ECNet and FECNet
in hyperspectral image classification, the proposed method is
compared with two kinds of methods: one is the classical
method SVM and the other is ten methods based on deep learn-
ing, including SSRN, CDCNN, PyResNet, DBMA, DBDA,

1Register trademark.
2Trademarked.



5528316 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 60, 2022

TABLE I

CLASSIFICATION RESULTS OF IP DATASET USING 3% TRAINING SAMPLES (%)

Fig. 14. Classification maps obtained by different methods on IP dataset (Sample proportion is 3%). (a) Ground truth map. (b) SVM (68.76%). (c) SSRN
(90.25%). (d) CDCNN (64.86%). (e) PyResNet (85.65%). (f) DBMA (87.95%). (g) DBDA (93.58%). (h) Hybird-SN (82.18%). (i) A2S2K-ResNet (92.55%).
(j) DSSNet (48.32%). (k) 3-D-HyperGAMO (93.50%). (l) SpectralFormer (71.32%). (m) ECNet (95.33%). (n) FECNet (95.81%).

Hybrid-SN, A2S2K-ResNet, DSSNet, 3-D-HyperGAMO, and
SpectralFormer.

SVM is a spectral classifier based on radial basis func-
tion (RBF) [7]. CDCNN is a deep context CNN, which
can optimally explore the local context by combining the
spatial–spectral relationship of a single pixel vector. PyResNet
is an improvement of ResNet. It adds additional links to ordi-
nary CNN and gradually increases the dimension of feature
map in all Conv layers. Different from the above methods,
DBMA and DBDA are two branch networks, which are used
to extract spatial–spectral features, respectively. Hybrid-SN is
a hybrid model of 3-D-CNN and 2-D-CNN. The model uses
3-D-CNN and 2-D-CNN to extract spectral–spatial features,
respectively. A2S2K-ResNet improves ResNet by using adap-
tive spatial–spectral kernel and captures more discriminative
spatial–spectral features through end-to-end training. DSSNet
is a segmentation network based on expansion convolution,
which aims to solve the problem that pooling operation may
lead to the loss of resolution and coverage. 3-D-HyperGAMO

is a GAN. The data generated by the generator are trained with
the original data to further improve the performance of the
classifier. SpectralFormer is the first method applied in the field
of hyperspectral image classification based on transformer.

Different space input sizes have a great impact on classifi-
cation performance. For fair comparison, the input space size
of all methods is set to 9 × 9. In addition, the percentage of
training samples for IP, UP, KSC, SV, and HT datasets is set
to 3%, 0.5%, 5%, 0.5%, and 2%.

1) Classification Results of IP Dataset: Table I and
Fig. 14 show the numerical accuracy and visual results of
ECNet and FECNet methods compared with other methods.
It can be seen in Table I that the three indicators OA, AA,
and Kappa of ECNet and FECNet are higher than those
of other methods. Among them, FECNet obtained the best
OA (95.81%), AA (93.48%), and Kappa (95.22%), while
ECNet obtained OA, AA, and Kappa only 0.48%, 0.41%, and
0.54% lower than FECNet. In addition, compared with other
methods, the increases of OA obtained by the proposed ECNet



SHI et al.: HYPERSPECTRAL IMAGE CLASSIFICATION BASED ON ECNet 5528316

TABLE II

CLASSIFICATION RESULTS OF UP DATASET USING 0.5% TRAINING SAMPLES (%)

Fig. 15. Classification maps obtained by different methods on UP dataset (sample proportion is 0.5%). (a) Ground truth map. (b) SVM (82.06%). (c) SSRN
(92.50%). (d) CDCNN (87.94%). (e) PyResNet (83.01%). (f) DBMA (91.80%). (g) DBDA (96.01%). (h) Hybird-SN (82.09%). (i) A2S2K-ResNet (86.81%).
(j) DSSNet(57.90%). (k) 3-D-HyperGAMO (91.32%). (l) SpectralFormer (82.12%). (m) ECNet(97.12%). (n) FECNet (97.50%).

are 26.57% (SVM), 5.08% (SSRN), 30.47% (CDCNN),
9.68% (PyResNet), 7.38% (DBMA), 1.75% (DBDA), 13.15%
(Hybrid-SN), 2.78% (A2S2K-ResNet), 47.01% (DSSNet),
5.80% (3-D-HyperGAMO), and 24.01% (SpectralFormer).
Fig. 14 shows the visualization results. Due to the seri-
ous mixing between different categories of the original IP
dataset, the classification results of many advanced comparison
methods are not satisfied, such as Hybrid-SN, DSSNet, and
SpectralFormer. Similarly, it can be seen from the classifi-
cation diagram in Fig. 14 that there is more noise in the
classification maps of SVM, CDCNN, PyResNet, and DSSNet.
In addition, there are some wrong classifications in Hybrid-SN
and SpectralFormer. However, the proposed methods ECNet
and FECNet can obtain good classification results, as shown
in Fig. 14(m) and (n).

2) Classification Results of up Dataset: Table II and
Fig. 15 show the specific classification results. The UP dataset
has nine categories, which is seven less than the IP dataset. The
number of UP spectral bands is about half of the IP, but from
the classification results, the UP dataset is easier to classify.

It can be seen from Table II that the classification results of
DBMA and DBDA based on double branch structure on the
UP dataset are better than those of SSRN, CDCNN, PyResNet,
Hybrid-SN, and DSSNet. In addition, satisfactory results were
obtained by A2S2K-ResNet based on adaptive attention and
3-D-HyperGAMO based on generative adversarial. However,
the OA, AA, and Kappa results of the proposed ECNet and
FECNet are higher than that of all the above comparison meth-
ods. Among the two methods of ECNet and FECNet, the three
scores OA, AA, and Kappa of ECNet are slightly lower than
those of FECNet. From the classification diagram, as shown in
Fig. 15, the methods with more label classification errors are
SVM, PyResNet, Hybird-SN, DSSNet, and SpectralFormer.
The same conclusion can be obtained from the classification
results in Table II. However, the classification results obtained
by the proposed ECNet and FECNet are the best.

3) Classification Results of KSC Dataset: Table III and
Fig. 16 show the classification results of all methods,
respectively. It can be seen from Table III that compared
with the classification results of UP dataset in Table II,
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TABLE III

CLASSIFICATION RESULTS OF KSC DATASET USING 5% TRAINING SAMPLES (%)

Fig. 16. Classification maps obtained by different methods on KSC dataset (sample proportion is 5%). (a) Ground truth map. (b) SVM (87.96%). (c) SSRN
(94.52%). (d) CDCNN (89.33%). (e) PyResNet (93.97%). (f) DBMA (94.12%). (g) DBDA (96.76%). (h) Hybird-SN (79.72%). (i) A2S2K-ResNet (98.34%).
(j) DSSNet (83.40%). (k) 3-D-HyperGAMO (96.90%). (l) SpectralFormer (86.01%). (m) ECNet (99.12%). (n) FECNet (99.27%).

the classification results of KSC dataset are greatly improved,
which is due to less noise in KSC dataset and higher spatial
resolution of KSC dataset than UP. In addition, it is worth
noting that ECNet and FECNet still get the highest OA,
AA, and Kappa scores. Among them, the OA, AA, and
Kappa scores of FECNet are still slightly higher than ECNet.
Compared with other comparison methods, the increases of
OAs obtained by the proposed ECNet are 11.16% (SVM),
4.60% (SSRN), 9.79% (CDCNN), 5.15% (PyResNet),
5.00% (DBMA), 2.36% (DBDA), 19.40% (Hybrid-SN),
0.78% (A2S2K-ResNet), 15.72% (DSSNet), 2.22%
(3-D-HyperGAMO), and 13.11% (SpectralFormer). The
classification results of KSC datasets by different methods
are shown in Fig. 16. Oak/broadleaf (C5) is a category that
is difficult to classify in KSC dataset. For easier observation,
enlarge some areas of the classification map, as shown in the
red box mark in Fig. 16. It can be seen that the classification
map of SVM, Hybrid-SN, DSSNet, and SpectralFormer
contains more noise. Obviously, the classification map
obtained by SSRN, DBMA, DBDA, A2S2K-ResNet, and
3-D-HyperGAMO is better than them. However, compared
with these methods, the classification map of ECNet and
FECNet is smoother.

4) Classification Results of SV Dataset: The classification
results of each method are shown in Table IV and Fig. 17.
It can be seen from Table IV that for Grapes-untrained (C8),
our methods ECNet and FECNet can get better classification
results, while other methods have poor classification results
for this category, which shows that the proposed method can
still effectively extract features for categories that are difficult
to classify, which further shows that the proposed method has
strong robustness. In addition, compared with other compari-
son methods, the increases of OAs obtained by the proposed
ECNet are 10.43% (SVM), 5.37% (SSRN), 9.05% (CDCNN),
4.68% (PyResNet), 4.46% (DBMA), 3.67% (DBDA), 9.63%
(Hybrid-SN), 2.26% (A2S2K-ResNet), 28.01% (DSSNet),
1.92% (3-D-HyperGAMO), and 10.25% (SpectralFormer).
The visualization results of all methods are shown in Fig. 17.
It can be seen that the classification maps of ECNet and
FECNet are smoother than other classification maps, which
proves that the method proposed in this article has more
advantages in datasets with similar categories and regular land
cover.

5) Classification Results of HT Dataset: Table V and
Fig. 18 show the classification results of all methods. It can
be seen from Table V that the proposed method can provide
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TABLE IV

CLASSIFICATION RESULTS OF SV DATASET USING 0.5% TRAINING SAMPLES (%)

Fig. 17. Classification maps obtained by different methods on SV dataset (sample proportion is 0.5%). (a) Ground truth map. (b) SVM (86.98%). (c) SSRN
(92.04%). (d) CDCNN (88.36%). (e) PyResNet (92.73%). (f) DBMA (92.95%). (g) DBDA (93.74%). (h) Hybird-SN (87.78%). (i) A2S2K-ResNet (95.15%).
(j) DSSNet (69.40%). (k) 3-D-HyperGAMO (95.49%). (l) SpectralFormer (87.16%). (m) ECNet (97.41%). (n) FECNet (97.85%).

the highest OA, AA, and Kappa on HT dataset. Among them,
compared with A2S2K-ResNet with the highest three indexes
in other comparison methods, the OA, AA, and Kappa scores
of FECNet are 1.25%, 0.37%, and 1.34% higher, respectively.
Fig. 18 shows the visualization results of all methods. When
dealing with objects with small sizes, spatial features alone
may lead to over smoothing phenomenon or even misclassify
the image, for example, CDCNN and DSSNet. However, the
classification map of ECNet and FECNet is not only less mis-
classified but also maintains good boundaries for the objects.

In conclusion, the ECNet and FECNet methods proposed in
this article get the best classification results on five datasets,
which fully prove that the proposed method has strong gen-
eralization ability. In IP datasets with uneven land cover
distribution and HT datasets with higher resolution, ECNet
and FECNet can still obtain better classification accuracy than
other methods. In addition, in the SV dataset with similar
categories and the UP dataset with fewer bands, our method
can realize high-precision classification of the categories that
are difficult to distinguish.
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TABLE V

CLASSIFICATION RESULTS OF HT DATASET USING 2% TRAINING SAMPLES (%)

Fig. 18. Classification maps obtained by different methods on HT dataset (sample proportion is 2%). (a) Ground truth map. (b) SVM (84.12%). (c) SSRN
(88.09%). (d) CDCNN (74.64%). (e) PyResNet (80.09%). (f) DBMA (90.73%). (g) DBDA (92.17%). (h) Hybird-SN (89.31%). (i) A2S2K-ResNet (92.18%).
(j) DSSNet (52.61%). (k) 3-D-HyperGAMO (88.48%). (l) SpectralFormer (91.44%). (m) ECNet (92.90%). (n) FECNet (93.43%).

D. Analysis of the Proposed Method

In this section, we will analyze the parameters of the
proposed method, and the model is suitable for the selection
of parameters.

1) Contribution of Each Block of the Proposed Method: In
order to verify the effectiveness of each block in the method
proposed in this article, some ablation experiments are carried
out on each block, and the results are shown in Table VI.
It can be seen that compared with standard CNN, the proposed
ECB can provide higher OA score, which shows that it is

TABLE VI

COMPARISON OF OA SCORES OF DIFFERENT BLOCKS (%)

more effective to expand the RF of spectral feature extraction
through expansion convolution. In addition, we add the SFB
block on the basis of ECB, which can feedback the deep
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TABLE VII

RUNNING TIME (S), PARAMETERS REQUIRED, AND MEMORY REQUIREMENT (MB) BY ALL THE METHODS COMPARED WITH THE PROPOSED METHOD

Fig. 19. Visualization results of the two blocks. (a) Confusion matrix obtained
using standard CNN. (b) Confusion matrix obtained using ECB.

features to the shallow features, so that the shallow features
can adjust themselves. Experimental results show that SFB can
further improve the classification performance. For datasets IP
and HT, when the SFB block is added to the network, the
classification effect is improved more obviously.

In order to further verify the effectiveness of ECB, the
visualization results of the proposed FECNet using standard
CNN and ECB are shown in Fig. 19(a) and (b), respectively.
The ordinate represents the real category label, the abscissa
represents the predicted category label, and the diagonal
represents the probability that the predicted category label is
the same as the real category label. Compared with the results
in Fig. 19(b), it is obvious that there are more misclassification
results in Fig. 19(a), which proves that the effectiveness of
the proposed network with ECB is better than that with
standard CNN.

2) Comparison of Different Input Sizes: The setting of
parameters can affect the classification performance, and the
input space size has a great impact on the classification
performance of the network. In order to further verify the
impact of different input sizes on performance, the space input
with the size of 5 × 5, 7 × 7, 9 × 9, 11 × 11, and 13 × 13 was
carried out in the experiment. Fig. 19 shows the comparison
results of the different input space sizes of FECNet. It can be
seen that from Fig. 20: first, when the input space size is small,
the OA score obtained by training is relatively low. Second, for
IP, UP, and KSC datasets, after OA reach better performance,

Fig. 20. Comparing different input space sizes of FECNet.

the OA score changes little with the increase of space size. For
SV and HT datasets, OA increased first and then decreased.
Third, for the datasets IP, UP, and KSC, the space size is
9 × 9 to achieve the best performance. Although the optimal
classification performance was not obtained at 9 × 9 on SV
and HT, the suboptimal classification performance was also
obtained. Therefore, the input space size of all datasets in this
experiment is 9 × 9.

3) Comparison of Running Time, Parameters, and Mem-
ory Requirement of Different Methods: Table VII shows the
comparison results of running time, parameter quantity, and
memory requirement of all methods. Because PyResNet adds
additional links to CNN and gradually increases the dimension
of feature map in all Conv layers, the parameters required for
training the model are large. ECNet and FECNet build models
based on expansion convolution, so that the network requires
relatively few parameters. Similarly, although the required
training parameters and running time of DBMA and DBDA
are similar to those of the proposed method, the performance
of ECNet and FECNet is better. The parameters of DSSNet
based on expansion convolution are similar to ECNet and
FECNet, and the training time is long, especially for IP and
SV datasets. It is worth noting that SpectralFormer based on
transformer framework needs a long running time due to its
slow convergence speed. In addition, the memory required
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Fig. 21. Comparison of OAs of all methods with different training proportions. (a) OA comparison on IP datasets. (b) OA comparison on UP dataset. (c) OA
comparison on KSC dataset. (d) OA comparison on SV dataset. (e) OA comparison on HT dataset.

by the proposed method is relatively moderate. Among all
methods, SpectralFormer based on transformer architecture
requires the least memory, while PyResnet and DSSNet require
more memory. In conclusion, compared with other methods,
ECNet and FECNet require less parameters, moderate running
time, and memory on five datasets.

4) Comparison of OAs of Different Methods With Different
Training Proportions: The comparison results of OAs of all
methods under different training proportions on five datasets
are shown in Fig. 21. Here, the ordinate represents the OA
and the abscissa represents the proportion of training samples.
As can be seen from Fig. 20, the OAs of ECNet and FECNet
with all training proportions are higher than that of other
methods, which shows that the proposed method can not only
achieve good classification in small samples but also maintain
the good classification performance in large samples, which
further proves the effectiveness of the proposed method.

IV. CONCLUSION

In this article, we propose an ECNet based on expansion
convolution, which expands the RF through the superposi-
tion of expansion convolution layers, so as to obtain more
discriminative features. This method not only alleviates the
computational burden caused by the increase of RF but also
avoids the overfitting phenomenon under small training sam-
ples. In addition, when the equivalent convolution kernel of
the expanded convolution is the same as that of the stan-
dard convolution, the expanded convolution module not only
requires fewer parameters than the standard convolution mod-
ule but also provides higher classification accuracy. In order

to further enhance the propagation of features, we introduce
SFB based on ECNet. The experimental results show that the
addition of SFB can significantly improve the classification
performance and fully prove the effectiveness of the block in
hyperspectral image classification. The proposed ECNet and
FECNet are tested on four classical datasets and a higher
resolution dataset (HT) and compared with a variety of the
latest classification methods. The experimental results show
that ECNet and FECNet can provide the best classification
performance and have strong generalization ability. Although
the proposed method achieves higher classification accuracy
than other state-of-the-art methods on five public datasets,
there are still some challenges. For example, for IP datasets
with more categories and complex ground distribution and
HT datasets with higher resolution, the classification accuracy
of the method based on expansion convolution under limited
training samples still needs to be further improved. In the
future work, we will consider to combine the expansion con-
volution block of space and spectrum to extract hyperspectral
image features more effectively, so as to further improve the
classification performance of hyperspectral images.
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